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Abstract  

Savanna represents an important vegetation biome in West Africa, providing food and 

services to people, and habitat for large amount of vegetation and animal species. 

However, this biome knows a rapid degradation of its vegetation cover driven by 

anthropogenic and climatic stressors. Monitoring and modelling vegetation change 

are relevant to safeguarding forest and combat land degradation. This study explored 

the use of biophysical and demographic datasets to model vegetation trends in the 

savanna of Burkina Faso. For that, vegetation trends were detected from 2001 to 2020 

with the Mann-Kendall’s trend test. Random Forest (RF), Super Vector Machine 

(SVM) and Artificial Neural Network (ANN) algorithms were used to model 

vegetation trends driven by biophysical and demographic variables. The result 

revealed that non-significant vegetation trends were prominent (73%) in the study area 

during 2001-2020, while greening and degradation trends characterised 13% and 14% 

of the pixels, respectively. RF was found superior to SVM and ANN in the modelling 

of vegetation trends categories with overall accuracy (Kappa index) above 0.80 (0.70). 

The study provided sound information that can support the development of efficient 

strategies to combat land degradation. 

Key words: Vegetation trends; Modelling; Savanna; Burkina Faso 

Modélisation des tendances de la végétation à l’aide de données 

biophysiques et démographiques dans la savane du Burkina Faso 

Résumé 

La savane représente un important biome en Afrique de l’Ouest, fournissant de la 

nourriture et des services aux populations, et un habitat à une grande quantité 

d’espèces végétales et animales. Cependant, ce biome connaît une dégradation rapide 

de sa couverture végétale due aux pressions anthropiques et climatiques. Le suivi et 

la modélisation des tendances de la végétation sont nécessaires pour la sauvegarde des 

forêts et la lutte contre la dégradation des terres. Cette étude a exploré l’utilisation 

d’ensembles de données biophysiques et démographiques pour modéliser les 

tendances de la végétation dans la savane du Burkina Faso. Pour cela, les tendances 

de la végétation ont été détectées de 2001 à 2020 avec le test de tendance de Mann-

Kendall. Les algorithmes Random Forest (RF), Super Vector Machine (SVM) et 

Artificial Neural Network (ANN) ont été utilisés pour modéliser les tendances de la 
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végétation induites par des variables biophysiques et démographiques. Le résultat a 

révélé que des tendances non significatives étaient prédominantes (73 %) dans la 

végétation de la zone d’étude au cours de la période 2001-2020, tandis que les 

tendances de verdissement et de dégradation caractérisaient respectivement 13 % et 

14 % des pixels. RF s'est avéré supérieure à SVM et à ANN dans la modélisation des 

catégories de tendances de la végétation avec une précision globale (indice Kappa) 

supérieure à 0,80 (0,70). L'étude a fourni des informations qui peuvent soutenir le 

développement de stratégies efficaces pour lutter contre la dégradation des terres. 

Mots clés : Tendances de la végétation ; Modélisation ; Savane ; Burkina Faso 

 

 

 

Introduction 

Vegetation constitutes a key element in the interaction of the geosphere, 

biosphere and atmosphere (MENNIS, 2001). It is among the first 

elements to be altered in terrestrial ecosystems degradation (STAVI 

AND LAL, 2015), and it is thus perceived as an indicator of global 

change (Peng et al., 2015). Indeed, any change in vegetation cover can 

affect the environment at any scale (AMRI et al., 2011). Nowadays, the 

problem of vegetation change has become a worldwide issue, part of a 

global agenda, since it is related to climatic and anthropogenic pressure 

(LUKAS et al., 2023).  

In West Africa, savanna represents an important vegetation biome, 

providing food and services to people, and habitat for large amount of 

vegetation and animal species. However, this biome knows a rapid 

degradation of its vegetation cover driven by human and climatic 

stressors (RASMUSSEN et al., 2014; ZOUNGRANA AND DIMOBE, 

2023). In this regard, it drew the attention of several researchers and 

scholars. Many of the previous investigations used earth observation 

data to monitor the spatiotemporal change of vegetation cover. Land 

use/cover dynamics analysis is one of the largely adopted methods to 

detect spots of vegetation conversions by anthropogenic land use 

(BRAIMOH, 2004; OUEDRAOGO et al., 2010; HOUESSOU et al., 

2013; DIMOBE et al., 2015). Other authors have rather focused on 

vegetation trends analysis using long time series of vegetation index, 

like NDVI (Normalized Difference Vegetation Index), to assess 

greening or browning trend areas (LI et al., 2010; TRAORE et al., 

2014). The underlying driving factors of vegetation trends were also 

matter of investigation, and the climatic-driven effects and 

anthropogenic pressures are pointed out as the main causes of the 
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savanna vegetation change in West Africa (HERRMANN et al., 2005; 

OLSSON et al., 2005; LEROUX et al., 2017; ZOUNGRANA AND 

DIMOBE, 2023).  

Despite the previous investigations, in the savanna of West Africa, the 

link of vegetation dynamics with biophysical and anthropogenic 

variables still needs to be documented to efficiently combat land 

degradation. For that, the accuracies of vegetation change modelling 

must be improved to set up appropriate safeguarding and mitigation 

measures. Commonly, logistic regression models were used to model 

and assess drivers of vegetation change among biophysical and 

anthropogenic variables (BRAIMOH AND VLEK, 2005; DIMOBE et 

al., 2015). Recently, studies have shown the strength of non-parametric 

algorithms, such as Random Forest (RF), Super Vector Machine (SVM) 

and Artificial Neural Network (ANN), to relate vegetation change to 

biophysical (climatic, topographic, edaphic, accessibility data) and 

anthropogenic variables (ZOUNGRANA AND DIMOBÉ, 2023; 

LEROUX et al., 2017). Those algorithms are presented as potential 

modelling tools, because of their performance and high predictive 

capacity (FORKUOR et al., 2017; LEROUX et al., 2017). However, 

their potentials to model vegetation trends using biophysical and 

demographic predictors have not been fully explored in the West 

African savanna zone. 

In Burkina Faso, the savanna biome is of paramount importance, since 

it provides food and vital ecosystem services to local populations which 

depend largely on it for their livelihood. However, several spots of this 

biome have shown alarming signals of land degradation driven by 

climatic pressure as well as by the rapid population growth with the 

unsustainable use of land (YANGOULIBA et al., 2023; 

ZOUNGRANA AND DIMOBÉ, 2023). If this dynamic maintains, it is 

likely to increase land degradation, and loss of soil fertility and 

biodiversity, which can affect food security in the country. It is 

therefore important to monitor and model vegetation dynamics in line 

with anthropogenic and biophysical factors in order to provide sound 

information to combat vegetation degradation in the savanna biome of 

Burkina Faso.  

The objective of the present study was to explored the use of 

biophysical and demographic datasets to model vegetation trends in the 

savanna of Burkina Faso. Specifically, the study aimed to: (i) detect 

vegetation trend categories in the study area from 2001to 2021; and (ii) 
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assess the performance of Random Forest, Super Vector Machine and 

Artificial Neural Network algorithms to model vegetation trend 

categories in the savanna of Burkina Faso. 

I. Materials and methods 

I.1. Study area 

The study area covers 44,685 km2 and is located in Burkina Faso 

approximately between latitudes 11⁰0´0´´N to 13⁰0´0´´N and longitudes 

0⁰15´0´´W to 3⁰0´0´´W (Figure1). The study area has a tropical climate, 

and it belongs to the Sudanian phytogeographical domain, which is 

divided into the North and South Sudanian sectors (FONTES AND 

GUINKO, 1995). Savanna vegetation, from tree savanna to grassy 

savanna, dominates in the study area, with key species such as Vitellaria 

paradoxa, Parkia biglobosa, Pterocarpus erinaceus, Terminalia 

laxiflora, Afzelia africana, Anogeisus leiocarpa, etc. (THIOMBIANO 

AND KAMPMANN, 2010). There are also gallery forests encountered 

along the rivers. The population is dynamic with high fertility rates. 

Agriculture is the principal economic activity, representing the main 

source of livelihood for the local population, as in the whole country 

where 85.5% of the labour are involved in the agriculture sector 

(SANFO, 2010; INSD, 2022). Small-scale agricultural practices are 

common with a rudimentary character. The main crop grown are 

cereals, such as sorghum, millet, maize and rice. The expansion of 

cropland coupled with population growth and climate vagaries increase 

pressure on the natural vegetation of the study area.  

 

Figure 1. Location of the study area; the insets show the phytogeographical 

sectors of Burkina Faso, and Burkina Faso in Africa 
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I.2. Data collection 

I.2.1. Vegetation data: 250 m MODIS NDVI data from 2001 to 

2020 

NDVI trends was employed as proxy to assess vegetation change. Time 

series of NDVI 16-day composites of MODIS Terra MOD13Q1 

product, with a spatial resolution of 250 m and spanning from 2001 to 

2020, were obtained from Google Earth Engine (GEE) cloud platform. 

The MOD13Q1 product was widely used for vegetation change 

monitoring, and it have already been successfully applied in the West 

African Sudanian savanna to analyse vegetation dynamics 

(ZOUNGRANA AND DIMOBE, 2023). Based on the pixel-level data 

quality indicators provided by MOD13Q1 product, quality assurance 

mask was applied to the dataset in order to obtain a high-quality 

MODIS NDVI time series. Annual mean NDVI time series were 

derived for the 2001-2020 period and used for trend analysis in the GEE 

platform. 

I.2.2. Biophysical and demographic datasets 

Various biophysical and demographic related data were gathered to 

model vegetation trends (Table 1). Annual rainfall data (gridded) were 

collected from TAMSAT (MAIDMENT et al., 2014; TARNAVSKY et 

al., 2014) for the period 2001-2020. These datasets are based on 

Meteosat thermal infra-red (TIR) imagery provided by EUMETSAT, 

and the TIR is calibrated against an extensive ground-based rain gauge 

data archive. Three indicators of rainfall were computed: coefficient of 

variation, rainfall trend and mean annual rainfall. Elevation above mean 

sea level was derived from the 30 m SRTM (Shuttle Radar Topography 

Mission) (https://earthexplorer.usgs.gov/), and soil type data were 

collected from the national soil office of Burkina Faso (BUNASOL). 

Accessibility data (distance to river) were derived from data collected 

at the Geographical Institute of Burkina Faso (IGB). Population growth 

between 2000 and 2020 was computed (equation 1) using the Gridded 

Population of the World version 4 (GPWv4) dataset produced by the 

Center for International Earth Science Information Network. All the 

environmental data were projected to UTM WGS 84 zone 30 with 

spatial resolution of 250 m to match the pixel size and the projection of 

the MODIS NDVI data. 
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𝑃𝐺𝑟 =
𝑝2020−𝑝2000

𝑝2000
𝑥100  (1) 

where, 𝑃𝐺𝑟  indicates population growth 

Table I. Set of predictors selected to model vegetation trends 

Types Variables Sources Spatial 

resolutio

n 

Climatic Coefficient of variation of annual 

rainfall (%) 

TAMSAT   ~ 4 km 

Mean annual rainfall (mm) 

Rainfall trend 

Topographic Elevation (m) SRTM 30 m 

Edaphic Soil types units BUNASO

L BF 

Vector 

data 

Accessibility Euclidean distance from river (m) IGB Vector 

data 

Demographi

c 

Population growth (2000-2020 in %) GPWv4 1 km 

 

I.3. Evaluation of modelling performance 

The process of vegetation trends modelling includes three steps: 

• Step 1: detection of vegetation trend classes; 

• Step2: fitting modelling algorithms with biophysical and 

anthropogenic predictors;  

• Step 3: assessing the performance of the modelling algorithms. 

I.3.1. Vegetation trends detection 

Vegetation trend analysis was conducted over area covered by 

vegetation, while water bodies were excluded. Vegetation trend classes 

were detected with the non-parametric Mann-Kendall’s trend test that 

was applied to the annual NDVI time series (2001-2020) using GEE 

platform. Actually, this trend detection technique computes the 

correlation between the NDVI time series data (observation data) and 

time. Two outputs were considered from the Mann-Kendall’s trend 

analysis: the trend significance value (p-value) and the Kendall’s tau (τ) 

which is a correlation coefficient indicating the sign of trends. Positive 

τ values stand for increasing trend, and negative τ values indicate 

degradation. A trend is statistically significant if p-value < 0.05, while 

non-significant trend is attributed to pixels with p > 0.05. Three 
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vegetation trend classes were considered based on the results of the 

trend analysis (Table II). The formula of Mann-Kendall’s trend test is 

given below as described in ZOUNGRANA AND DIMOBE (2023). 

 

S = ∑ ∑ sign(xj 

n

j=i+1

n−1

i=1

− xi)                                                (2)   

Where n is the numbers of data points. xi and xj are annual values in 

years j and i. j > 1 and Sign (xi - xj) calculated using the equation: 

Sign(xj − xi) = {

1 if (xj − xi) > 0

0 if (xj − xi) = 0

−1 if (xj − xi) < 0

                            (3)  

The computation of Mann Kendall significance produces a standardized 

Z (Equation 4) and corresponding probability p (Equation 5). 

Z =

{
 
 

 
 

S − 1

√Var(S)
    if S > 0

   0                if  S = 0 
S + 1

√Var(S)
   if S < 0

                                         (4) 

and  p = 2[1 − ϕ(|Z|)]                     (5)   

Where ϕ(|Z|) =
2

√π
∫ e−t

2|Z|

0
dt               (6) 

 

Table II. Vegetation trend classes considered in this study 

Kendall’s tau (τ) P value Change class 

τ > 0 
p < 0.05 Greening 

p > 0.05 Unchanged  

τ < 0 
p < 0.05 Degradation 

p > 0.05 Unchanged 

 

I.3.2. Modelling algorithms 

Random Forest (RF), Super Vector Machine (SVM) et Artificial Neural 

Network (ANN) algorithms were used to relate vegetation trends to 

anthropogenic and biophysical variables due to their high predictive 
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capacity (FORKUOR et al., 2017; LEROUX et al., 2017). Random 

Forest (RF), Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) are among the most popular MLA (LÖW et al., 2015; 

FORKUOR et al., 2017; THANH NOI AND KAPPAS, 2017;). RF is 

an ensemble machine learning algorithm developed by BREIMAN 

(2001) for classification and regression. It is based on bagging, a 

technique used for training data creation by randomly resampling the 

original dataset with replacement (ZOUNGRANA et al., 2015). For 

classification, RF builds several trees with random samples of 

observations and a random sample of variables, then, the outputs of the 

classification trees are aggregated, and a class is assigned by majority 

voting (BREIMAN, 2001). SVM focuses exclusively on the training 

samples that are closest in the feature space to the optimal boundary 

between the classes. These samples are called support vectors and give 

the method its name. SVM aims to find the optimal boundary, which 

maximizes the separation, or margin, between the support vectors 

(MAXWELL et al., 2018). As for ANN, it is a system based on 

biological neural networks. It consists of an interconnected group of 

neurons, and each neuron has a single computation process (ZHOU 

AND YANG, 2008). The elements of an ANN are neurons (equivalent 

to biological axons), which are organized in layers. An ANN has 

minimum input and output layers, with a neuron for each input variable, 

and a neuron for each output class (MAXWELL et al., 2018). These 

three non-parametric algorithms were found more accurate than the 

parametric algorithms, particularly when dealing with many predictors 

and different types of data as well as complex non-linear mappings 

(PAL, 2005; GHIMIRE et al., 2012; MAXWELL et al., 2018).  

I.3.3. Models fitting and validation 

The presence of high spatial autocorrelation in the reference dataset can 

lead to overestimation of modelling accuracy. To avoid high spatial 

autocorrelation in the reference data, Moran’s I-based correlogram was 

built for the different variables using the Elsa package of the software 

R. The analysis of the correlograms enabled the selection of a minimum 

distance between sampling points to reduce spatial autocorrelation. 

Accordingly, the minimum distance between sampling points was set 

to 3 km with Moran’s I value of 0.4. In all, 1600 reference samples 

(pixels), shared between the three vegetation trend classes (greening, 

degradation and unchanged), were randomly selected for the modelling. 

RF, SVM and ANN classification models were fit using the statistical 

software R, with vegetation trend classes as categorical response 
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variable, and the climatic, topographic, edaphic, accessibility and 

demographic variables were considered as predictors. 

To ensure an effective comparison of the modelling algorithms, two 

types of modelling validations were considered: internal 10-fold cross 

validation with 3 repetitions and external validation with 30% of the 

reference sample. Overall accuracy and Kappa index were derived to 

assess the performance of each modelling algorithms. Furthermore, the 

McNemar’s test was used to evaluate the statistical significance of the 

differences between the performances of each algorithm based on the 

derived confusion matrices. McNemar’s test is a nonparametric test 

which is based on a pair of confusion matrices of correctly and wrongly 

classified reference samples (ZOUNGRANA et al., 2015), and it 

produces a chi-square (χ2) statistics that is computed by Equation (3). 

χ2 =
(𝑓12 − 𝑓21)

2

(𝑓12 − 𝑓21)
                                        (7) 

Where 𝑓12 indicates the number of cases correctly classified by 

classifier 1 but incorrectly classified by classifier 2, and 𝑓21 represents 

the number of cases correctly classified by classifier 2 but wrongly 

classified by classifier 1.  

II. Results 

II.1. Vegetation trend during 2001-2020 

The vegetation trend map revealed consistent patterns of NDVI trends 

in the study area between 2001 and 2020 (Figure 2). Unchanged 

vegetation area (grey colour) was particularly prominent (73%) and 

distributed throughout the study area. Greening trend (green colour) 

covered 13% of the pixels and was concentrated in the North-Sudanian. 

Degradation trend, in red colour, characterized 14% of the pixels and 

occurred mainly in the South-Sudanian. Most of the protected areas had 

often unchanged vegetation cover (non-significant trend, p value > 

0.05) (e.g. Tambi Kaboré national park, Nazinga forest and Sissili 

forest), and other like the Gonsé forest exhibited dominant patterns of 

greening vegetation trend. However, spots of declining vegetation were 

also detected in some protected areas such as the Nakambe forest and 

Tiogo forest.  
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Figure 2. Changes occurred in the vegetation of the study area during 2001-

2020 

II.2. Performance of the machine learning algorithms  

The achieved modelling accuracies for RF, SVM and ANN 

classifications are presented in Figure 3. RF came out as the best 

algorithm against SVM and ANN from the two types of modelling 

validation. RF classifier outperformed SVM and ANN with the highest 

overall accuracy and kappa index across the 10 folds of the cross 

validation (Figure 3a-b). The mean overall accuracy (kappa index) of 

the 10 folds were 0.82(0.73), 0.76(0.63) and 0.59(0.47) for RF, SVM 

and ANN respectively (Figure 3c). The external validation also showed 

the superiority of RF (ov. accuracy= 0.81; kappa =0.75) over SVM (ov. 

accuracy= 0.72; kappa =0.60) and ANN (ov. accuracy= 0.60; kappa 

=0.46) (Figure 3d).  

The McNemar’s test indicated that all observed differences in accuracy 

between the three classifiers predictions were significant at the 0.01 

significance level (Table III). Particularly, RF and SVM were the most 

accurate modelling algorithms, and their performances were 

significantly different from the one of ANN. 
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Figure 3. Overall accuracy and kappa index values from the validation 

methods 

 

Table III. McNemar’s test results based on a comparison of the classifiers 

performance 
 

F11 F12 F21 F22 Chi-square p-value 

RF-SVM 1327 50 163 260 59.9 <0.001 

RF-ANN 1107 0 383 310 383 < 0.001 

SVM-ANN 1107 77 220 396 68.9 < 0.001 

 

II.3. Contribution of variables to the modelling  

Modelling with RF, SVM and ANN provides the opportunity to assess 

the predictors contribution through the importance score of variables. 

The relative importance score of the predictors from the two best 

algorithms (RF and SVM) are shown in Table IV. According to RF and 

SVM modelling, rainfall trend, mean annual rainfall and population 

growth were by order of importance the key contributing variables, 

followed by the coefficient of variation (CV) of annual rainfall, 

elevation and distance to river. Soil type was found to be the least 

important variable with the weakest contribution in RF and SVM 

modelling.  
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Table IV: Variable importance score (mean decrease accuracy) derived 

from RF and SVM modelling 

Variables 
Relative importance 

RF SVM 

Rainfall trend 95 90 

Mean annual rainfall 89 85.21 

Population growth  82 65.07 

CV of annual rainfall 63.1 40.11 

Elevation 59.55 33.5 

Distance to river 32.26 11.75 

Soil type 2.36 3.23 

 

III. Discussions 

As reported by previous investigations that used NDVI time series 

(LEROUX et al., 2014; ZOUNGRANA et al., 2018; ZOUNGRANA 

AND DIMOBE 2023), the vegetation of the West African Sudanian 

savanna has largely exhibited in the last decades non-significant trends. 

The same characteristic is also observed in the study area of this 

investigation between 2001 and 2020. However, the combined effects 

of climate vagaries and unsustainable anthropogenic land use might 

explain the occurrence of the detected vegetation trends. Rainfall 

variables (rainfall trend and mean annual rainfall), that was found as the 

key contributing variables in machine learning modelling, could have 

probably guided the greening trend. Indeed, an increase in rainfall was 

reported in this region since the beginning of the 2000s (LUCIO et al., 

2012).  Similar conclusions were reached in Niger by LEROUX et al. 

(2017) that found rainfall average with the highest variable importance 

score in a random forest classification of vegetation trends. In addition 

to the climatic variables, our findings revealed population growth also 

as a key variable in the modelling of vegetation trends in the study area. 

Anthropogenic actions, such as reforestation, might have also 

contributed to the greening spots in the study area. However, human, 

through the unsustainable land use, is shown as the key driver of 

vegetation degradation in the Sudanian savanna, especially at local 

scale (BRAIMOH, 2004; DIMOBE et al., 2015). At landscape scale, 

human impact is perceived through built-up and cropland expansion at 

the detriment of the natural vegetation cover (OUEDRAOGO et al., 

2010; HOUESSOU et al., 2013; KNAUER et al., 2017). 
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It came out from our results that RF has better modelling capacity of 

vegetation trend classes with climatic, topographic, edaphic, 

accessibility and demographic variables than SVM and ANN in the 

Sudanian savanna, at least in the Sudanan savanna of Burkina Faso. 

This predictive performance of RF was also noticed by LEROUX et al. 

(2017) that used RF to model local vegetation production trends in 

southwestern Niger and achieved an overall accuracy of 80%. Our 

results accord with previous studies that found RF efficient in the 

mapping of vegetation change in the African savannas (FORKUOR, 

2014; GESSNER et al., 2015; ZOUNGRANA et al., 2015). Studies 

have also found RF outperforming SVM and ANN. For instance, 

FORKUOR et al. (2017) combined remote sensing and biophysical data 

to predict soil information, and they findings revealed that RF 

performed better than SVM and multiple linear regression in the 

prediction of soil properties such as sand, silt, clay, cation exchange 

capacity, soil organic carbon and nitrogen. Similar conclusions were 

noted in the modelling of electronic tongue (LIU et al., 2013). However, 

contrasted results were obtained by ABDI (2020) in the classification 

land use/cover in a boreal landscape using Sentinel-2 data. The author 

noted the superiority of SVM to RF, gradient boosting and deep 

learning. The difference of geographical zone might explain the 

discrepancy of results with the present study. Nevertheless, in the 

Sudanian savanna, our findings highlight that RF can be preferably used 

with biophysical and demographic variables to predict directional 

vegetation change and anticipate future change. It also showed that RF 

model offers an opportunity to distinguish the influence of 

environmental variables on vegetation change (KRAKAUER et al., 

2017). 

Our study confirmed the continuity of vegetation degradation in the 

West African Sudanian savanna despite the presence of greening spots. 

Climatic and anthropogenic pressures are driving vegetation change in 

this part of the world. The study showed the superiority of RF algorithm 

to model vegetation trend classes, which is useful in the context of 

climate change and can help to combat land degradation in the savanna 

of Burkina Faso. 

Conclusion 

Monitoring and modelling vegetation change is of paramount 

importance, especially in the context of climate change and population 

growth. The intercomparison of the Random Forest (RF), Super Vector 
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Machine (SVM) and Artificial Neural Network (ANN) algorithms to 

model vegetation trends with biophysical and demographic datasets in 

the savanna of Burkina Faso yielded acceptable accuracies. The 

findings confirmed the potential of RF and SVM to relate vegetation 

trends to biophysical and demographic variables, which is motivating 

in the combat against land degradation. The degradation of vegetation 

in the Sudanian savanna of Burkina Faso is still ongoing, despite the 

presence of greening spots. Climatic and anthropogenic pressures are 

the main threats for vegetation cover in the study area. More efforts 

towards sustainable land use are needed and safeguarding policies 

should be reinforced in the country. The study provided sound 

information that could help to tackle land degradation and improve our 

understanding of vegetation dynamics in the savanna of Burkina Faso. 

Conflicts of interest 

No potential conflict of interest was reported by the authors 

Acknowledgements 

We thank WASCAL graduate school “Informatics for climate change” 

for providing facilities to conduct this research. 

References 

ABDI AM. 2020. Land cover and land use classification performance 

of machine learning algorithms in a boreal landscape using Sentinel-2 

data. GIScience & Remote Sensing, 57(1), 1-20. 

AMRI, R, ZRIBI M, LILI-CHABAANE Z, DUCHEMIN B, 

GRUHIER C, CHEHBOUNI A. 2011. Analysis of vegetation behavior 

in a North African semi-arid region, using SPOT-VEGETATION 

NDVI data. Remote sensing, 3(12), 2568-2590. 

BRAIMOH AK, VLEK PLG. 2005. Land-Cover Change Trajectories 

in Northern Ghana. Environmental Management, 36(3), 356–373. 

BRAIMOH AK. 2004. Seasonal migration and land-use change in 

Ghana. Land Degradation and Development, 15, 37–47. 

BREIMAN L. 2001. Random forests. Maching Learning, 45, 5–32. 

DIMOBE K, OUÉDRAOGO A, SOMA S, GOETZE D, POREMBSKI 

S, THIOMBIANO A. 2015. Identification of driving factors of land 

degradation and deforestation in the Wildlife Reserve of Bontioli 



 

44          Vol. 43, n° 2 (1) – juillet - décembre 2024 – Sciences Naturelles et Appliquées - Publié le 31 décembre 2024 

(Burkina Faso, West Africa). Global Ecology and Conservation, 4, 559-

571. 

FONTÈS J, GUINKO S. 1995. Vegetation map and land use in Burkina 

Faso. Explanatory note: French Ministry of Cooperation 

FORKUOR G, HOUNKPATIN OK, WELP G, THIEL M. 2017. High 

resolution mapping of soil properties using remote sensing variables in 

South-Western Burkina Faso: a comparison of machine learning and 

multiple linear regression models. PloS one, 12(1), p.e0170478. 

FORKUOR G. 2014. Agricultural Land Use Mapping in West Africa 

Using Multi-sensor. PhD thesis, Julius-Maximilians-Universität 

Würzburg, 175 p. 

GESSNER U, MACHWITZ M, ESCH T, TILLACK A, NAEIMI V, 

KUENZER C, DECH S. 2015. Multi-sensor mapping of West African 

land cover using MODIS, ASAR and TanDEM-X/TerraSAR-X data. 

Remote Sensing of Environment, 164, 282-297. 

GHIMIRE B, ROGAN J, GALIANO VR, PANDAY P, NEETI N. 

2012. An evaluation of bagging, boosting, and random forests for land-

cover classification in Cape Cod, Massachusetts, USA. GIScience & 

Remote Sensing, 49(5), 623-643. 

HERRMANN SM, ANYAMBA A, TUCKER CJ. 2005. Recent trends 

in vegetation dynamics in the African Sahel and their relationship to 

climate. Global Environmental Change, 15, 394–404 

HOUESSOU LG, TEKA O, IMOROU IT, LYKKE AM, SINSIN B. 

2013. Land Use and Land-Cover Change at “W” Biosphere Reserve 

and Its Surroundings Areas in Benin Republic (West Africa). 

Environment and Natural Resources Research, 3(2), 87-101. 

INSD, 2022. Cinquième Recensement Général de La Population et de 

l’Habitation Du Burkina Faso. INSD, Ouagadougou, Burkina Faso. 

file:///C:/Users/HP/Downloads/Rapport%20resultats%20definitifs%20

RGPH%202019%20(1).pdf 

KNAUER K, GESSNER U, DECH S, KUENZER C, 2014. Remote 

Sensing of Vegetation Dynamics in West Africa. International Journal 

of Remote Sensing, 35, 6357-6396.  

KNAUER K, GESSNER U, FENSHOLT R, FORKUOR G, 

KUENZER C, 2017. Monitoring agricultural expansion in Burkina 

Faso over 14 years with 30 m resolution time series: the role of 

file:///C:/Users/HP/Downloads/Rapport%20resultats%20definitifs%20RGPH%202019%20(1).pdf
file:///C:/Users/HP/Downloads/Rapport%20resultats%20definitifs%20RGPH%202019%20(1).pdf


 

Vol. 43, n° 2 (1) – juillet - décembre 2024 – Sciences Naturelles et Appliquées - Publié le 31 décembre 2024          45 

population growth and implications for the environment. Remote 

Sensing, 9(2), p.132. 

KRAKAUER N, LAKHANKAR T, ANADÓN J, 2017. Mapping and 

attributing normalized difference vegetation index trends for Nepal. 

Remote Sensing, 9(10), p.986. 

LEROUX L, BÉGUÉ A, LO SD. 2014. Regional analysis of crop and 

natural vegetation in West Africa based on NDVI metrics. International 

Geoscience and Remote Sensing Symposium(IGARSS), 5107-5110 

LEROUX L, BÉGUÉ A, SEEN DL, JOLIVOT A, KAYITAKIRE F. 

2017. Driving forces of recent vegetation changes in the Sahel: Lessons 

learned from regional and local level analyses. Remote sensing of 

environment, 191, 38-54. 

LI Z, LI X, WEI, D, XUB X, WANGA H. 2010. An assessment of 

correlation on MODIS-NDVI and EVI with natural vegetation coverage 

in Northern Hebei Province, China. Procedia Environmental Sciences, 

2, 964–969 

LIU M, WANG M, WANG J, LI D. 2013. Comparison of random 

forest, support vector machine and back propagation neural network for 

electronic tongue data classification: Application to the recognition of 

orange beverage and Chinese vinegar. Sensors and Actuators B: 

Chemical, 177, 970-980. 

LÖW F, KNÖFEL P, CONRAD, C. 2015. Analysis of uncertainty in 

multi-temporal object-based classification. ISPRS Journal of 

Photogrammetry and Remote Sensing, 105, 91-106. doi: 

http://dx.doi.org/10.1016/j.isprsjprs.2015.03.004. 

LUCIO PS, MOLION LCB, VALADÃO CEA, CONDE FC, RAMOS 

AM, DE MELO MLD. 2012. Dynamical Outlines of the Rainfall 

Variability and the ITCZ Role over the West Sahel. Atmospheric and 

Climate Sciences, 2(3), 337-350. 

LUKAS P, MELESSE AM, KENEA TT. 2023. Prediction of future 

land use/land cover changes using a coupled CA-ANN model in the 

upper omo–gibe river basin, Ethiopia. Remote Sensing, 15(4), 1148. 

https://doi.org/10.3390/rs15041148 

MAIDMENT R, GRIMES D, ALLAN RP, TARNAVSKY E, 

STRINGER M, HEWISON T, ROEBELING R, BLACK E. 2014. The 

30 year TAMSAT African Rainfall Climatology And Time series 



 

46          Vol. 43, n° 2 (1) – juillet - décembre 2024 – Sciences Naturelles et Appliquées - Publié le 31 décembre 2024 

(TARCAT) data set, Journal of Geophysical Research: Atmospheres, 

119(18),10-619, DOI: 10.1002/2014JD021927 

MAXWELL AE, WARNER TA, FANG F. 2018. Implementation of 

machine-learning classification in remote sensing: an applied review. 

International Journal of Remote Sensing, 39(9), 2784–2817. 

doi:10.1080/01431161.2018.1433343 

MENNIS J. 2001. Exploring relationships between ENSO and 

vegetation vigor in the southwest USA using AVHRR data. 

International Journal of Remote Sensing, 22, 3077 – 3092 

OLSSON L, EKLUNDH L, ARDO J. 2005. A recent greening of the 

Sahel—trends, patterns and potential causes. Journal of Arid 

Environments, 63, 556–566. 

OUEDRAOGO I, TIGABU M, SAVADOGO P, COMPAORE H, 

ODEN PC, OUADBA JM. 2010. Land cover change and its relation 

with population dynamics in Burkina Faso, West Africa. land 

degradation and development, 21, 453–462. 

PAL M. 2005. “Random Forest Classifier for Remote Sensing 

Classification.” International Journal of Remote Sensing, 26 (1), 217–

222 

RASMUSSEN K, FENSHOLT R, FOG B, RASMUSSEN LV, 

YANOGO I. 2014. Explaining NDVI trends in northern Burkina Faso. 

J. Geogr., 114, 17–24 

SANFO S. 2010. Politiques publiques agricoles et lutte contre la 

pauvreté au Burkina Faso : le cas de la région du Plateau Central. Thèse 

de Doctorat, Université Paris 1 Panthéon‐Sorbonne, Paris, France. 

STAVI I, LAL R. 2015. Achieving Zero Net Land Degradation: 

Challenges and opportunities. Journal of Arid Environments, 112, 44–

51. doi:10.1016/j.jaridenv.2014.01.016 

TARNAVSKY E, GRIMES D, MAIDMENT R, BLACK E, ALLAN 

R, STRINGER M, CHADWICK R, KAYITAKIRE F. 2014. Extension 

of the TAMSAT Satellite-based Rainfall Monitoring over Africa and 

from 1983 to present, Journal of Applied Meteorology and Climatology, 

DOI 10.1175/JAMC-D-14-0016.1 

THANH NOI P, KAPPAS M. 2017. Comparison of random forest, k-

nearest neighbor, and support vector machine classifiers for land cover 

classification using Sentinel-2 imagery. Sensors, 18(1), 18. 



 

Vol. 43, n° 2 (1) – juillet - décembre 2024 – Sciences Naturelles et Appliquées - Publié le 31 décembre 2024          47 

THIOMBIANO A, KAMPMANN D. 2010. Biodiversity atlas of West 

Africa, volume II: Burkina Faso. Ouagadougou & Frankfurt/Main 

TRAORE SS, LANDMANN T, FORKUO EK, TRAORE PCS. 2014. 

Assessing Long-Term Trends In Vegetation Productivity Change Over 

the Bani River Basin in Mali (West Africa). Journal of Geography and 

Earth Sciences, 2(2), 21-34. 

YANGOULIBA GI, ZOUNGRANA BJB, HACKMAN KO, KOCH H, 

LIERSCH S, SINTONDJI LO, DIPAMA JM, KWAWUVI D, 

OUEDRAOGO V, YABRÉ S, BONKOUNGOU B. 2023. Modelling 

past and future land use and land cover dynamics in the Nakambe River 

Basin, West Africa. Modeling Earth Systems and Environment, 9(2), 

pp.1651-1667. 

ZHOU L, YANG X. 2008. Use of neural networks for land cover 

classification from remotely sensed imagery, The International 

Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Vol. XXXVII. Part B7. Beijing 2008 

ZOUNGRANA B J-B, CONRAD C, AMEKUDZI LK, THIEL M, DA 

ED, FORKUOR G, AND LÖW F. 2015. Multi-Temporal Landsat 

Images and Ancillary Data for Land Use/Cover Change (LULCC) 

Detection in the Southwest of Burkina Faso, West Africa. Remote 

Sensing, 7, 12076-12102. 

ZOUNGRANA BJ-B, CONRAD C, THIEL M, AMEKUDZI LK, DA 

ED. 2018. MODIS NDVI trends and fractional land cover change for 

improved assessments of vegetation degradation in Burkina Faso, West 

Africa, Journal of Arid Environments, 153, 66–75 

ZOUNGRANA BJ-B, DIMOBÉ, K. 2023. NDVI-derived vegetation 

trends and driving factors in West African Sudanian savanna. American 

Journal of Plant Sciences, 14(10), 130-1145. 

doi.org/10.4236/ajps.2023.1410077 

 


